Phase Relationships in the Uranium-Palladium-Sulfur System

I. Characterization and Crystal Structure of UPd₂S₄

A. DAOUDI AND H. NOEL

Université de Rennes-Beaulieu, Laboratoire de Chimie du Solide et Inorganique Moléculaire, Unité Associée au CNRS n° 254, Avenue du Général Leclerc, 35042 Rennes, France

Received December 28, 1984

The new compound UPd₂S₄ was prepared by reacting stoichiometric amounts of US₂, Pd, and S in evacuated quartz ampoules. UPd₂S₄ crystallizes in the tetragonal system, a = b = 6.734(1), c = 11.841(4) Å, space group $I4_1/a$, Z = 4. The crystal structure was determined from single-crystal X-ray diffraction data and refined to a conventional R factor of 0.054. Palladium has a square planar sulfur coordination with Pd-S distances = 2.33 Å. Uranium is coordinated with eight sulfur atoms, with a mean U-S distance of 2.83 Å characteristic of uranium in the tetravalent state. © 1985 Academic Press, Inc.

Introduction

The existence of a number of ternary uranium sulfides with alkaline earths, 3d, and rare earth elements, has been reported in the past years (1-4). With M=3d, series of compounds with general formula MUS_3 , MU_2S_5 , and MU_8S_{17} were isolated (2) in which the 3d elements have an octahedral-type sulfur coordination and uranium an eightfold sulfur coordination. A study of ternary systems involving the noble 4d metals is being carried out, and we report here on the first new compound characterized in the U-Pd-S system.

Synthesis and Characterization of UPd₂S₄

The search for ternary compounds in the U-Pd-S system was carried out by heating calculated mixtures of US₂, palladium powder, and sulfur in evacuated and sealed

quartz tubes. Because of the sensitivity of uranium sulfides to oxygen and moisture, all mixings were performed in a dry-argon-filled glovebox. The reaction products were analyzed by the X-ray powder diffraction method, and preliminary investigations showed that at least three new ternaries form in these systems. Evolution of the X-ray diffraction patterns with composition revealed that a mixture (US₂ + 2 Pd + 2 S) heated and annealed at 900°C for 2 days yields a single-phase material UPd₂S₄.

Single crystals were obtained by the chemical vapor transport method using iodine as transporting agent in a two-zone furnace with the temperature gradient 920–860°C. The unit cell constants were derived from oscillation and Weissenberg photographs. UPd₂S₄ crystallizes in the tetragonal system a = b = 6.734(1), c = 11.841(4) Å; the systematic extinctions hkl: $h + k + l \neq 2n$, hk0: h, $(k) \neq 2n$, and 00l: $l \neq 4n$ are compatible with the space group $I4_1/a$. Ta-

TABLE I X-RAY POWDER DIFFRACTION DATA OF UPd_2S_4

	$d_{ m obs}$	$d_{ m calc}$		
hkl	(Å)	(Å)	1/I ₀	
101	5.854	5.854		
112	3.711	3.708	47	
103	3.409	3.403	50	
200	3.361	3.363	21	
202	2.921	2.925	100	
114	2.515	2.513	11	
213	2.392	2.392	9	
105	2.234	2.232	39	
312	2.002	2.002	40	
303	1.950	1.950	27	
224	1.855	1.854	46	
321	1.845	1.843	38	
116	1.823	1,822	16	
206	1.702	1.701	15	
400	1.683	1.682	13	
305	1.628	1,628	9	
332	1.532	1.532	7	
413	1.508	1,508	20	
217	1.474	1.474	17	
422	1.458	1.458	15	
316	1.447	1.446	12	

TABLE II
POSITIONAL PARAMETERS OF UPd₂S₄

Atom	х	у	z	
U	0	0.250	0.625	
Pd	0	0	0	
S	0.3033(5)	0.1032(5)	0.0742(3)	

TABLE IV
INTERATOMIC DISTANCES (Å) WITH ESTIMATED
STANDARD DEVIATIONS IN PARENTHESES

U-S	$2.788(3) \times 4$	S-S	$3.160(1) \times 2$
-S	$2.881(2) \times 4$	-S	3.306(5)
Pd-S	$2.329(3) \times 2$	-S	$3.427(4) \times 2$
-S	$2.332(2) \times 2$	-S	3.470(5)
U-U	4.483(0)	-S	$3.798(2) \times 2$
U-Pd	4.045(0)	$-\mathbf{S}$	4.034(4)
Pd-Pd	3.367(0)		
-Pd	3.799(0)		

ble I gives the X-ray powder pattern of UPd₂S₄.

The experimental density $d_{\text{exp}} = 6.98$ is in agreement with the theoretical density $d_{\text{th}} = 7.16$ calculated with Z = 4.

Crystal Structure Determination

A single crystal with dimensions $0.06 \times 0.09 \times 0.09$ mm was used for the structure determination. The X-ray diffraction intensities were measured on a Nonius CAD-4 four-circle diffractometer, using Mo $K\alpha$ ($\lambda = 0.71073$ Å) radiation and the $\omega - 2\theta$ scan mode.

Reflections (453) were collected within the limits $\theta \le 30^\circ$, $0 \le h \le 9$, $0 \le k \le 9$, $0 \le l \le 16$; 378 intensities with $l \ge 3\sigma(l)$ were regarded as observed and averaged to yield 292 independent reflections which were used in the structure determination. All the calculations were performed using the SDP

TABLE III $\hbox{Anisotropic } (\beta_{i,j}) \hbox{ and Equivalent Isotropic } (B\ (\mathring{\mathbb{A}}^2)) \hbox{ Thermal Parameters }$

Atom	$\beta(1,1)$	β(2,2)	$\beta(3,3)$	β(1,2)	$\beta(1,3)$	$\beta(2,3)$	В (Å ²)
U	1.03(2)	$\beta(1,1)$	0.21(3)	0	0	0	0.76(1)
Pd	0.94(4)	1.06(5)	0.23(4)	-0.06(4)	0.07(4)	-0.03(4)	0.74(2)
S	0.87(9)	1.1(1)	0.33(9)	-0.04(9)	0.09(9)	-0.0(1)	0.76(5)

Note. The form of the anisotropic thermal parameter is $\exp\left(-\frac{1}{4}\sum_{i,j}h_ih_ja_i^*a_j^*\beta(i,j)\right)$; were a^* is a reciprocal lattice constant.

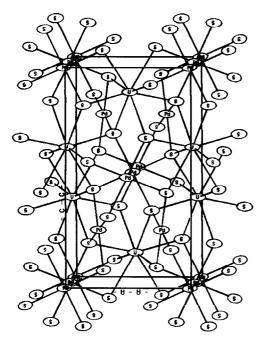


Fig. 1. View of the crystal structure of UPd₂S₄.

package (5). The intensities were corrected for Lorentz and polarization effects, and for absorption by approximating the crystal as a sphere with $\mu r = 1.8$. Uranium was found by the Patterson method to occupy the (4b): $(0, \frac{1}{4}, \frac{5}{8})$ special position and a difference Fourier map revealed the locations of Pd and S atoms in (8c): (0, 0, 0) and (16f): (x, y, z) positions, respectively. Full matrix least-square refinements of the positional and isotropic thermal parameters led to R = $\Sigma ||F_0|| - |F_c||/\Sigma |F_0|| = 0.085$ and $R_\omega =$ $|\Sigma\omega(|F_0| - |F_c|)^2/\Sigma\omega|F_0|^2|^{1/2} = 0.097$ with $\omega =$ $1/\sigma^2 F$. Subsequent refinement cycles, with anisotropic thermal factors for all atoms, led to R = 0.054, $R_{\omega} = 0.067$.

Tables II and III give the final positional and thermal parameters, and the main interatomic distances are listed in Table IV.¹

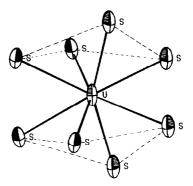


FIG. 2. Environment of uranium.

Crystal Structure Description

Figure 1 displays a view of the crystal structure of UPd_2S_4 . Representative of the anisotropy of the thermal vibrations, all the thermal ellipsoids are flattened perpendicularly to the $\overline{4}$ axis; the calculated root mean square amplitude of thermal vibrations in (a, b) planes are ~ 0.11 Å for all atoms.

Palladium, located on an inversion center, has a square planar-type sulfur coordination. The S-Pd-S angle is 85°37′ and the palladium-to-sulfur distance, 2.33 Å, is very close to those found in other ternary compounds: 2.34 Å in $K_2Pd_3S_4$ (6), 2.35–2.39 Å in Na_2PdS_2 (7), where palladium, in a divalent state, has also a square planar sulfur coordination.

Uranium is surrounded by eight nearneighbor sulfur atoms, with a coordination polyhedron which can be regarded as being a distorted antiprism (Fig. 2). The mean uranium-to-sulfur distance is d = 2.83 Å, a value which was found to characterize the uranium U^{4+} ion $(5f^2$ configuration) in an eightfold sulfur coordination (8). Assuming no electron delocalization, i.e., an insulating or a large-gap semiconducting behavior, the simple charge balance calculation also indicates a tetravalent state for uranium in UPd_2S_4 .

¹ A list of the observed and calculated structure factors may be obtained on request to the authors.

References

- R. Brochu, J. Padiou, and J. Prigent, C.R. Acad. Sci. C 274, 959 (1972).
- 2. H. NOEL, C.R. Acad. Sci. C 277, 463 (1973).
- 3. VOVAN TIEN, M. GUITTARD, J. FLAHAUT, AND N. RODIER, Mater. Res. Bull. 10, 547 (1975).
- 4. H. NOEL, J. Less Common Met. 72, 45 (1980).
- 5. B. A. FRENZ, in "Computing in Crystallography"
- (H. Schenk, R. Olthof-Hazekamp, H. Van Koningsveld, and G. C. Bassi, Eds.), p. 64, Delft Univ. Press, The Netherlands (1978).
- 6. J. HUSTER AND W. BRONGER, J. Solid State Chem. 11, 254 (1974).
- W. Bronger, O. Gunther, J. Huster, and M. Spangenberg, J. Less Common Met. 50, 49 (1976).
- 8. H. NOEL, J. Solid State Chem. 52, 203 (1984).